下载RPA请访问:www.i-search.com.cn
学习RPA请访问:https://support.i-search.com.cn
Excel 与 Python 都是数据分析中常用的工具 , 本文将使用动态图 (Excel)+ 代码(Python) 的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作!
数据读取 说明:读取本地 Excel 数据
Excel Excel 读取本地数据需要打开目标文件夹选中该文件并打开
Pandas
Pandas 支持读取本地 Excel、txt 文件 , 也支持从网页直接读取表格数据 , 只用一行代码即可 , 例如读取上述本地 Excel 数据可以使用 pd.read_excel(“示例数据.xlsx”)
数据生成 说明:生成指定格式 / 数量的数据
Excel
以生成 10*2 的 0—1 均匀分布随机数矩阵为例 , 在 Excel 中需要使用 rand() 函数生成随机数 , 并手动拉取指定范围
Pandas 在 Pandas 中可以结合 NumPy 生成由指定随机数 (均匀分布、正态分布等) 生成的矩阵 , 例如同样生成 10*2 的 0—1 均匀分布随机数矩阵为 , 使用一行代码即可:pd.DataFrame(np.random.rand(10,2))
数据存储 说明:将表格中的数据存储至本地
Excel 在 Excel 中需要点击保存并设置格式 / 文件名
Pandas 在 Pandas 中可以使用 pd.to_excel(“filename.xlsx”) 来将当前工作表格保存至当前目录下 , 当然也可以使用 to_csv 保存为 csv 等其他格式 , 也可以使用绝对路径来指定保存位置
数据筛选 说明:按照指定要求筛选数据
Excel 使用我们之前的示例数据 , 在 Excel 中筛选出薪资大于 5000 的数据步骤如下
Pandas 在 Pandas 中 , 可直接对数据框进行条件筛选 , 例如同样进行单个条件 (薪资大于 5000) 的筛选可以使用 df[df[‘薪资水平’]>5000] , 如果使用多个条件的筛选只需要使用 &(并)与 |(或)操作符实现
数据插入 说明:在指定位置插入指定数据
Excel 在 Excel 中我们可以将光标放在指定位置并右键增加一行 / 列 , 当然也可以在添加时对数据进行一些计算 , 比如我们就可以使用 IF 函数 (=IF(G2>10000,“高”,“低”)) , 将薪资大于 10000 的设为高 , 低于 10000 的设为低 , 添加一列在最后
Pandas 在 pandas 中 , 如果不借助自定义函数的话 , 我们可以使用 cut 方法来实现同样操作
bins = [0,10000,max(df[‘薪资水平’])]
group_names = [‘低’,‘高’]
df[‘new_col’] = pd.cut(df[‘薪资水平’], bins, labels=group_names)
数据删除 说明:删除指定行 / 列 / 单元格
Excel 在 Excel 删除数据十分简单 , 找到需要删除的数据右键删除即可 , 比如删除刚刚生成的最后一列
Pandas 在 pandas 中删除数据也很简单 , 比如删除最后一列使用 del df[‘new_col’] 即可
数据排序 说明:按照指定要求对数据排序
Excel 在 Excel 中可以点击排序按钮进行排序 , 例如将示例数据按照薪资从高到低进行排序可以按照下面的步骤进行
Pandas 在 pandas 中可以使用 sort_values 进行排序 , 使用 ascending 来控制升降序 , 例如将示例数据按照薪资从高到低进行排序可以使用 df.sort_values(“薪资水平”,ascending=False,inplace=True)
缺失值处理 说明:对缺失值 (空值) 按照指定要求处理
Excel 在 Excel 中可以按照查找—> 定位条件—> 空值来快速定位数据中的空值 , 接着可以自己定义缺失值的填充方式 , 比如将缺失值用上一个数据进行填充
Pandas 在 pandas 中可以使用 data.isnull().sum() 来检查缺失值 , 之后可以使用多种方法来填充或者删除缺失值 , 比如我们可以使用 df = df.fillna(axis=0,method=‘ffill’) 来横向 / 纵向用缺失值前面的值替换缺失值
数据去重 说明:对重复值按照指定要求处理
Excel 在 Excel 中可以通过点击数据—> 删除重复值按钮并选择需要去重的列即可 , 例如对示例数据按照创建时间列进行去重 , 可以发现去掉了 196 个重复值 , 保留了 629 个唯一值 。
Pandas 在 pandas 中可以使用 drop_duplicates 来对数据进行去重 , 并且可以指定列以及保留顺序 , 例如对示例数据按照创建时间列进行去重 df.drop_duplicates([‘创建时间’],inplace=True) , 可以发现和 Excel 处理的结果一致 , 保留了 629 个唯一值 。
格式修改 说明:修改指定数据的格式
Excel 在 Excel 中可以选中需要转换格式的数据之后右键—> 修改单元格格式来选择我们需要的格式
Pandas 在 Pandas 中没有一个固定修改格式的方法 , 不同的数据格式有着不同的修改方法 , 比如类似 Excel 中将创建时间修改为年 - 月 - 日可以使用 df[‘创建时间’] = df[‘创建时间’].dt.strftime(‘%Y-%m-%d’)
数据交换 说明:交换指定数据
Excel 在 Excel 中交换数据是很常用的操作 , 以交换示例数据中地址与岗位两列为例 , 可以选中地址列 , 按住 shift 键并拖动边缘至下一列松开即可
Pandas 在 pandas 中交换两列也有很多方法 , 以交换示例数据中地址与岗位两列为例 , 可以通过修改列号来实现
数据合并 说明:将两列或多列数据合并成一列
Excel
在 Excel 中可以使用公式也可以使用 Ctrl+E 快捷键完成多列合并 , 以公式为例 , 合并示例数据中的地址 + 岗位列步骤如下
Pandas
在 Pandas 中合并多列比较简单 , 类似于之前的数据插入操作 , 例如合并示例数据中的地址 + 岗位列使用 df[‘合并列’] = df[‘地址’] + df[‘岗位’]
数据拆分 说明:将一列按照规则拆分为多列
Excel 在 Excel 中可以通过点击数据—>分列并按照提示的选项设置相关参数完成分列 , 但是由于该列含有 [] 等特殊字符 , 所以需要先使用查找替换去掉
Pandas 在 Pandas 中可以使用.split 来完成分列 , 但是在分列完毕后需要使用 merge 来将分列完的数据添加至原 DataFrame , 对于分列完的数据含有 [] 字符 , 我们可以使用正则或者字符串 lstrip 方法进行处理 , 但因不是 pandas 特性 , 此处不再展开 。
数据分组 说明:对数据进行分组计算
Excel 在 Excel 中对数据进行分组计算需要先对需要分组的字段进行排序 , 之后可以通过点击分类汇总并设置相关参数完成 , 比如对示例数据的学历进行分组并求不同学历的平均薪资
Pandas 在 Pandas 中对数据进行分组计算可以使用 groupby 轻松搞定 , 比如使用 df.groupby(“学历”).mean() 一行代码即可对示例数据的学历进行分组并求不同学历的平均薪资 , 结果与 Excel 一致
数据计算 说明:对数据进行一些计算
Excel 在 Excel 中有很多计算相关的公式 , 比如可以使用 COUNTIFS 来统计薪资大于 10000 的岗位数量有 518 个
Pandas 在 Pandas 中可以直接使用类似数据筛选的方法来统计薪资大于 10000 的岗位数量 len(df[df[“薪资水平”]>10000])
数据统计 说明:对数据进行一些统计计算
Excel 在 Excel 中有很多统计相关的公式 , 也有现成的分析工具 , 比如对薪资水平列进行描述性统计分析 , 可以通过添加工具库之后点击数据分析按钮并设置相关参数
Pandas 在 pandas 中也有现成的函数 describe 快速完成对数据的描述性统计 , 比如使用 df[“薪资水平”].describe() 即可得到薪资列的描述性统计结果
数据可视化 说明:对数据进行可视化
Excel 在 Excel 中可以通过点击插入并选择图表来快速完成对数据的可视化 , 比如制作薪资的直方图 , 并且有很多样式可以直接使用
Pandas 在 Pandas 中也支持直接对数据绘制不同可视化图表 , 例如直方图 , 可以使用 plot 或者直接使用 hist 来制作 df[“薪资水平”].hist()
数据抽样 说明:对数据按要求采样
Excel 在 Excel 中抽样可以使用公式也可以使用分析工具库中的抽样 , 但是仅支持对数值型的列抽样 , 比如随机抽 20 个示例数据中薪资的样本
Pandas 在 pandas 中有抽样函数 sample 可以直接抽样 , 并且支持任意格式的数据抽样 , 可以按照数量 / 比例抽样 , 比如随机抽 20 个示例数据中的样本
数据透视表 说明:制作数据透视表
Excel 数据透视表是一个非常强大的工具 , 在 Excel 中有现成的工具 , 只需要选中数据—> 点击插入—> 数据透视表即可生成 , 并且支持字段的拖取实现不同的透视表 , 非常方便 , 比如制作地址、学历、薪资的透视表
Pandas 在 Pandas 中制作数据透视表可以使用 pivot_table 函数 , 例如制作地址、学历、薪资的透视表 pd.pivot_table(df,index=[“地址”,“学历”],values=[“薪资水平”]) , 虽然结果一样 , 但是并没有 Excel 一样方便调整与多样
vlookup 说明:利用 VLOOKUP 查找数据
Excel VLOOKUP 算是 EXCEL 中最核心的功能之一了 , 我们用一个简单的数据来进行示例
Pandas 在 Pandas 中没有现成的 vlookup 函数 , 所以实现匹配查找需要一些步骤 , 首先我们读取该表格
接着将该 dataframe 切分为两个
【数据|用Python实现Excel中常用的 20个操作方法总结分享】最后修改索引并使用 update 进行两表的匹配
推荐阅读
- 建设|这一次,我们用SASE为教育信息化建设保驾护航
- 区块|面向2030:影响数据存储产业的十大应用(下):新兴应用
- bug|这款小工具让你的Win10用上“Win11亚克力半透明菜单”
- 下架|APK Installer 和 WSATools 同时躺枪:冒牌应用登陆微软应用商店
- 苏宁|可循环包装规模化应用 苏宁易购绿色物流再上新台阶
- 软件和应用|AcrylicMenus:让Windows 10右键菜单获得半透明效果
- 安全|Redline Stealer恶意软件:窃取浏览器中存储的用户凭证
- 选型|数据架构选型必读:2021上半年数据库产品技术解析
- 殊荣|蝉联殊荣!数梦工场荣获DAMA2021数据治理三项大奖
- Tencent|原生版微信上架统信UOS应用商店:适配X86、ARM、LoongArch架构