吸积盘 近光速自转、迄今最重的恒星级黑洞,独家专访发现者苟利军( 二 )


文章插图

2019年4月10号人类的第一张黑洞照片,甜甜圈般的圆环,其实是黑洞伴星气体所产生的现象,而黑洞区域被称为黑洞阴影
“发现”背后的“原理”作为深空最漆黑的天体,黑洞的质量和转速,分别是如何测出的?
黑洞的质量并不难被测得。在黑洞周围,往往存在着伴星或者气体,并以黑洞为中心进行绕转。
和太阳与各行星的关系一样,科学家只需测出伴星或者气体绕转的速度以及与黑洞的距离,再代入著名的开普勒公式,便可得出黑洞的质量。
天文学中,这属于一种动力学方法,得出的答案最为精确,但也有其局限性,那就是它对天文观测的分辨率有一定的要求。
当分辨率不能满足要求时,科学家也会用统计学方法。即查看黑洞周围气体或者恒星的各种特性,如运动速度、亮度等,看它们与黑洞的质量有没有相关性,然后再用这些相关性推断黑洞质量。至于相关性是否可靠,就有待于观测的具体验证。
但想要测量黑洞的自转速度,难度就要大得多。
虽然黑洞的质量和转速都会对其周围的空间、天体运动产生影响,但后者的效应范围远远小于前者。
以恒星级黑洞为例,伴星通常位于黑洞之外几百万公里的轨道上,还是能够利用先进的望远镜分辨出其轨道变化,而自转的效应仅仅局限在距离黑洞几百公里的范围内——即便是目前地球上最先进的望远镜,包括拍摄到黑洞照片的望远镜,也分辨不了这个距离。
因此,科学家必须另辟蹊径。
吸积盘气体温度为科学家们提供了一些线索。离黑洞越近的气体,温度会越高,甚至能达到几千万度,而它们的特性也会有所不同。借助X射线空间望远镜探测到这类细小的差别,科学家可以推断出它周边黑洞的转速。


吸积盘 近光速自转、迄今最重的恒星级黑洞,独家专访发现者苟利军
文章插图

不同转速对黑洞光谱的影响图,图自NASA
“理论上讲,不同转速的黑洞会对吸积盘气体的辐射光谱、温度等物理量造成不一样的影响,那么我们就可以根据这些气体的一些物理量,通过拍摄并且分析光谱来推算黑洞的转速。”苟利军说。这次就是通过称为“连续谱拟合“的方法对于黑洞的自转速度进行了限定。
测量黑洞自转速度的方法不仅只有上述的一种,通常应用的还有通过一些吸积盘发射线拟合的方法。吸积盘除过连续辐射之外,吸积盘中的气体还可能产生一些发射线。
原子在发生“电子跃迁”(指粒子中电子的一种能量变化)时会吸收或者释放光子,形成发射线。由于不同元素的电子轨道不同,其发射线也是独一无二——这就像一个“身份证”,从而帮助科学家辨识宇宙中不同的物质。


吸积盘 近光速自转、迄今最重的恒星级黑洞,独家专访发现者苟利军
文章插图

这些发射线的光子在逃离黑洞的过程中,必然会受到周围黑洞的引力影响。
为了摆脱引力继续移动,光子会“耗费”一部分的能量,进而使得其电磁辐射的频率变低、波长变长,其发射线会朝红端移动,称之为“引力红移”。所以谱线的形状也携带了黑洞自转的信息。


吸积盘 近光速自转、迄今最重的恒星级黑洞,独家专访发现者苟利军
文章插图

“聪明的科学家会想出很多不同的方法去测量看似不太可能的事情。不同的方法在一定程度上也可以彼此验证。”苟利军说。
“发现”背后的“科学家”15个人的班级,最后只剩3个人Q:天文是一门小众学科,您是怎么踏上这条天文研究道路的?
苟利军:我想起七八年前,《Nature》天文杂志的主编和我聊起一个有趣的统计:90%的小朋友都对两样东西感兴趣,一个是恐龙,另一个是星空。我也曾是这些小朋友之一。
恐龙和星空,都属于特别遥远的时空,一个来自几亿年前的地球,一个来自数十亿光年外的宇宙,因为遥远,所以更充满了浪漫的遐想空间。
想到自己的左手来自几十亿年前爆炸的恒星,而右手来自另一个星系残留的尘埃,自己的身体默默记录了宇宙的痕迹,对宇宙也就更多了一份好奇。
上初中的时候,家里给我买了一台望远镜,当时的条件不太好,那台望远镜,其实比四个世纪前伽利略的第一台天文望远镜还要简陋一些,镜筒都是很多层纸卷在一起做成的,但对当时的我来说是如获至宝,我每天都会拿着它东瞧西望观察星空。
虽然家里没有给予我太多经济上的支持或培养,但精神上,他们一直很尊重和鼓励我对星空的喜爱,给我很多空间做自己的决定。

推荐阅读