导读:企业的精细化运营、数据驱动都是基于大数据分析来进行的 。
在大数据分析中,对用户行为进行分析挖掘又是一个重要的方向,通过对用户行为进行分析,企业可以了解用户从哪里来,进入平台后进行了哪些操作,什么情况下进行了下单付款,用户的留存、分布情况是怎样的等 。
在这些数据的指导下可以不断优化产品设计、运营模式从而促进转化率的提高和营收的增长 。
基于用户行为分析的常见场景包括事件分析、留存分析、分布分析、转化分析、行为路径分析等几个模块 。下面就这几个模块进行详细介绍 。
文章插图
01 事件分析
事件分析的应用场景非常广泛,通俗来讲事件是指“一个用户在某个时间、某个地点、进行了某些行为操作” 。
其中用户可以包括登录设备用户userid,也可以指未登录用户cookie;时间指事件发生的实际时间;地点指事件发生地,可以通过解析日志记录中的ip来获取事件发生地;行为操作指事件本身,一般互联网产品产品通过埋点等方式来捕获用户的行为 。
相比传统的写SQL跑数的分析方式,事件分析功能有着及时查询结果、可视化展现、可对不同事件不同用户属性进行自由组合筛选分析等方面的优势 。
- 事件分析场景案例
文章插图
02 留存分析
留存分析用来衡量用户的参与情况与活跃程度,分析在触发初始事件的用户中有多少用户还有后续的回访行为,该部分回访的用户占初始用户的比例 。在产品使用上可以通过定义初始事件和回访行为事件,计算出用户的留存率,可按日、按周、按月来查看留存情况 。
留存率是判断产品价值的一个重要参考指标,可以分析出由初始的新人用户转化为活跃用户、忠诚用户、高价值用户的好坏情况 。
- 留存分析场景案例
例如下图中可以看出用户的回访率很低,次日留存和7日留存都在2%左右,也可以判断出留存下的用户都是对该功能感兴趣的用户 。
文章插图
文章插图
03 分布分析
分布分析法根据用户行为维度指标,将用户进行区间分类统计数量,进而得到用户在各功能模块粘性的分布情况 。从分析维度来看主要包括按行为次数的分布分析,以及按行为时间的分布分析,通过直方图或折线图的形式展现分析结果 。
对用户行为事件的分析不仅有统计数量这种观察指标,还可以对该事件在不同维度中的分布来观察,从而了解该行为事件的更多维度信息 。
- 分布分析场景案例
文章插图
如果对用户的访问时间段进行分布分析,可以了解用户集中活跃的时间,进一步可以在用户活跃的时间段内对其进行主动触达营销方面的操作 。
04 转化漏斗分析
转化漏斗分析适用于对产品中的关键环节进行监控分析,通过自主定义漏斗步骤,对比分析关键步骤之间的转化情况,找到薄弱环节,进而优化产品交互设计或改进运营策略,最终达到提升转化、减少流失的目的 。
例如常见的搜索转化漏斗分析、购买产品转化漏斗分析:
文章插图
- 转化漏斗分析场景案例
发现问题的过程往往需要对变量进行多次拆分,可以进一步在每个节点设置事件的属性筛选维度(包括省份/城市/页面URL/设备型号等),完成多重维度的交叉分析 。
例如针对从浏览页面—>商品详情页—>加入购物车—>提交订单—>支付成功,这一转化路径可以根据手机型号iOS和Android分别创建两个转化漏斗来对比不同手机型号间的转化情况 。
根据业务场景需要,设定1-7天的转化有效期,如果转化事件超过该有效期的,为无效转化 。最后根据设定的条件查看各节点间的转化情况 。
文章插图
从生成的图表可以看出从启动到浏览页面这一步的流失较少,视为转化率100%;从浏览页面到浏览商品详情页的转化为60.9%,流失严重 。可能展示在列表页的商品没能吸引用户的兴趣或进入详情页的步骤繁琐;进一步到加入购物车的转化率为65.53% 。
05 行为路径分析
用户行为路径分析主要用于分析用户在产品使用过程中的路径,还原用户真实行为轨迹 。
通过路径分析模型,可以掌握每一关键节点前后的流入、流向,以方便优化节点交互或流程,从而提升产品转化效率 。
路径分析有以下常见的应用场景:
- 分析用户初始行为事件的后续流量走向;
- 分析结束事件的流量来源;
- 详细查看某个节点前后流量流入流出和流失的情况 。
文章插图
从图中可以看出,加入购物车的流量主要是从商品详情页而来,加入购物车后有将近50%的用户选择提交订单,有40%的用户选择继续浏览页面,还有10%的用户流向了登录、注册、浏览商品详情页等模块 。
06 session分析
用户进入电商类网站或APP的一个典型流程包括,进入首页后搜索关键词、点击商品板块或点击推荐商品进入详情页,在详情页浏览点击加购后退出该页面搜索其它商品继续浏览,最后进入订单页进行支付,或浏览途中退出APP 。这系列行为就是用户的行为轨迹,对于用户这样的连续访问会话,我们称为session 。
文章插图
Session中记录了用户在什么时间点、通过什么样的行为、浏览了什么页面/商品 。
一般session的切割为固定时长,如定义APP端session的切割时长为5分钟时,即用户每次访问行为如果距离上一次访问行为在5分钟之内,则记为同一次访问,如果距离上次访问大于5分钟则记为两次不同的访问 。通过session_id可用来标识用户的访问,同一次连续访问的session_id相同,否则不同 。
基于session对用户进行分析具有非常重要的作用,可以从用户的访问来源、访问着陆页、退出页、访问次数、访问路径、访问商品品类等多个维度分析用户特征 。
例如可以通过每天的session访问次数及人均访问次数,分析产品对用户的粘性:
文章插图
文章插图
【6个维度从0到1详解用户画像 用户画像分析案例范文】 上面介绍了6种常见的用户行为分析工具,用户行为平台的目的是通过分析进而优化产品、提升用户体验及GMV,而不仅仅作为一个工具停留在分析层面 。
推荐阅读
- 十一维度是啥
- 从左到右从未失手是什么意思
- 6个字伤感网名大全
- 打印机安装步骤,打印机使用注意事项
- 国内价格最便宜的渔具批发市场 渔具店从哪里进货便宜
- 从头到尾教你录屏详细步骤 华为手机录屏怎么弄
- 煤气灶一直在点火怎么办,煤气灶打火从下面出火是什么原因
- 「中考文言文」《狼》详解,从此再也不用担心语文成绩
- 芜湖到贵州遵义做什么车去
- 生蚝绿色的东西是屎吗