多案例分享:如何规范撰写统计分析方法
针对统计分析方法的撰写 , 小咖整理了来自医咖会合作伙伴石瑀博士的一场讲座《临床研究方案中统计分析部分的撰写》 , 上一期我们推送了前半部分内容 , 涉及:连续变量的分组方法和依据、主要和次要结局的统计分析方法以及亚组分析 。
本期为大家介绍后半部分的内容 , 包括缺失数据处理和敏感性分析 , 并通过一个研究计划书的修改案例 , 让大家直观感受规范的统计分析写法 。
缺失数据的处理无论开展多么高质量的临床试验、病例对照研究或者队列研究 , 缺失数据的问题都是不可避免的 。 此时 , 对于缺失数据的处理方法 , 需要在统计分析部分进行详细的描述 。
比如有篇论文写到:“我们对缺失数据的分析基于随机缺失假设 , 使用了MICE方法在STATA中进行填充 。 通过多因素logistic回归分析了10个填充后的数据副本 , 根据这10个副本中的估值 , 计算了均值并且计算调整后的标准误….”
下图中是另一个案例 , 由于有些患者收集的资料不全 , 或者患者脱落、死亡等原因 , 存在缺失数据 , 需要进行多重数据填补 。
本文插图
下图是我近期刚投稿的一篇文章 , 估计大气污染物对心衰患者预后的影响 。 评价的是长期污染物的暴露效应 , 长期暴露的定义为患者入组前365天的平均暴露水平 。 但是大气污染物监测站点数据存在缺失 。 在这篇文章的方法学部分描述如下 ,12天的缺失数据相对于计算365天的均值而言 , 影响有限(limited effect) , 因此对于这部分缺失我们直接忽略 。 虽然是直接忽略 , 但是仍需要在方法学部分进行描述 。 对于处理缺失数据的方法 , 例如采用末次观测值结转或者多重填补甚至是忽略 , 一定要在统计学方法部分进行详细的描述 , 并给出选择该方法的依据或考量 。
本文插图
敏感性分析敏感性分析往往是为了验证研究结果的可靠性 。 例如 , 从专业角度考虑在某研究中研究人群中有一小部分人可能跟研究总体存在异质性 , 这时候研究者可以考虑进行敏感性分析 , 操作的方式可以是剔除该部分人群 , 对剩余的样本人群进行重新分析 , 判断此时的结果与原来的结果是否一致 。 此外 , 如果某些研究采用某个新型的统计模型 , 研究者可以通过调整模型中一些参数 , 来判断研究结果可不可靠 。
下面的研究进行了两种敏感性分析 。 第一个是把有过敏史或者慢性鼻炎的患者排除以后 , 以剩余的研究对象作为研究对象进行分析 。 另一个是校正其他几个可能会影响PM2.5效应估计的污染物 , 判断校正后的PM2.5效应与校正前有无差异 。
本文插图
案例:某研究计划书前面讲了统计分析部分中 , 研究者最常碰到也是容易忽视的一些内容 。 接下来举个例子 , 下图为修改前的某份研究计划书 , 写了许多套话 , 并不规范 , 从这份研究计划书中我们并不能获知这个研究具体要做哪些统计分析 。
采用SPSS 16.0统计软件包进行统计分析 。 所有的统计检验均采用双侧检验 , P值≤0.05将被认为所检验的差别有统计意义 。 采用t检验或χ2检验比较试验组和对照组间的疗效 。
下图则是修改后的研究计划书:
采用SPSS 16.0统计软件包进行统计分析 。 所有的统计检验均采用双侧检验 , P值≤0.05将被认为所检验的差别有统计意义 。
对血压、心率、体温、肛管直肠压力测定值、创面及瘘管最终愈合时间等连续变量描述其均数、标准差 。 对分类变量如性别、创面疼痛程度得分、肛门功能评价得分以及疗效评定结果描述其例数及百分数 。
用均数±标准差分别描述试验组和对照组治疗前和愈合后肛管直肠静息压、肛管高压区长度和肛管最大收缩压 。 以治疗前的上述指标为协变量 , 采用协方差分析比较试验组和对照组手术后上述指标的变换是否有统计学差异 。
比较试验组和对照组间的创面及瘘管最终愈合时间时 , 视方差齐性检验的结果采用t检验或t’检验 。 采用χ2检验比较试验组和对照组间的创面疼痛程度得分、肛门功能评价得分以及疗效评定结果 。
医咖会面向医生个人、医院/单位、企业提供各种科研服务 , 包括研究设计、统计分析、EDC系统、科研培训等 , 详情查看:医咖会可为你提供这些科研服务 , 助你解决各种科研难题! 。 快加小咖微信(xys2019ykh)或扫描以下二维码加小咖微信咨询吧 。
推荐阅读
- 遗精过多有药膳治疗
- 肺炎吃什么食物效果最好
- 治疗咳嗽的食疗法有哪些?
- 患有尿毒症病人可以吃榴莲吗
- 湿疹患者吃什么好啊?
- 韩式减肥不喝水的原因
- 孕妇注意事项 春季孕妇饮食注意事项
- 便秘能吃味精吗
- 喝酒后咳嗽怎么办呢
- 口腔溃疡吃什么容易好呢?
