揭开宇宙重要奥秘的“变星狂魔”( 二 )

揭开宇宙重要奥秘的“变星狂魔”
文章插图
勒维特(右)与安妮坎农(左)的合影。后者是唯一获准使用哈佛天文台望远镜的女性一年后,勒维特离开了哈佛天文台、前往欧洲旅行。归来后,她在家乡附近的威斯康辛伯洛伊特学院谋到了一份艺术助教的职位。但最终,她还是被恒星召唤回到了天文学领域。勒维特没有留下任何日记,信件也以公事为主,很少透露个人细节。不过,她显然在天文台的工作中投入了大量心力。据一名天文学家描述,她“对工作的着迷程度堪称罕见”。在离开天文台六年后,她向皮克林表达了自己是多么热爱和怀念之前的工作。她在 1902 年 5 月 13 日的一封信中写道:“假如这些我怀着无比的喜悦、开展到了一定程度的工作最终没能完成,我简直无法描述自己有多么遗憾。”勒维特十分盼望能重回天文学领域,并询问皮克林能否让她回到天文台就职、或在学校担任一名天文学教师。不过,她从事教职的希望并不大,因为她的听力正在逐年变差。医生也不允许她在寒冷的夜间观察星空,因为医生认为寒冷会加剧耳聋。皮克林对这种“天文学会影响听力”的看法感到迷惑,但又没有位于温暖地区的天文台愿意接收勒维特,因此皮克林给她开了 30 美分的时薪,让她重回哈佛天文台。勒维特接受了这份工作,于 1903 年重新成为了哈佛天文台的全职计算员。她又重新拾起了自己在变星方面的工作。皮克林对搜寻星云区域中的变星很感兴趣,并于 1903 年获得了卡内基研究所提供的一笔资金。但到了 1904 年,卡内基研究所停止了这笔资助。哈佛天文台的高级计算员威廉敏娜弗莱明不得不遣散所有计算员,只留下了勒维特一人。勒维特只得独自接管了这项工作,而她的第一项任务便是猎户座大星云。她翻看了过去十年来针对猎户座大星云拍摄的感光片,在其中发现了 77 颗新变星。接下来,她又将目光转向了射手座星云和小麦哲伦云。1905 年夏天,《科学美国人》在一篇报道中介绍道,“勒维特小姐”自 1904 年 2 月开始独立开展星云研究工作起,已经发现了 1300 颗新的变星。整个 1908 年,勒维特一直小麦哲伦云与大麦哲伦云中搜寻变星。(当时天文学家们还不知道二者都是围绕银河系转动的小型矮星系。)她在其中一共发现了 1777 颗新变星,并计算出了它们的最小与最大亮度。揭开宇宙重要奥秘的“变星狂魔”
文章插图
这片小麦哲伦云的感光玻璃片上留有勒维特的笔记就在这时,她发现了一个独特的规律。在给 16 颗新变星分类后,她注意到恒星亮度越高,完成一次亮度变化周期的时间就越长。尽管这一观测结果对后世造成了深远影响,但勒维特当时并没在这上面琢磨太久,也没去细想它的意义。她把表格上交之后,就因病休假了一年。她在报告中对这一发现的描述也只有寥寥数语:“值得注意的是…… 越亮的变星周期越长。”勒维特病愈后,在天文台的工作任务也有所变动。但在这段时间里,她仍对麦哲伦云中的变星念念不忘。在发表首次报告的三年后,她又重新将目光对准了小麦哲伦云。尽管勒维特并不知道感光片上的恒星到地球的确切距离,但她知道,这些恒星都是小麦哲伦云的一部分,因此都差不多一样遥远。她据此做出了一项十分重要的推论:恒星的视星等变化与距离没有关系,亮度更高的恒星并非因为距地球更近才显得更加明亮,而是因为它们本来就亮。为验证这一猜测,她又将另外八颗恒星的完整变化周期绘制成图表,得出的结论依然与三年前相同:恒星越亮,周期越长。这一次,她的报告得到了皮克林的注意。几个月后,他于 1912 年 3 月 3 日发表了勒维特关于亮度与周期之间“惊人联系”的观测结果。这种联系就此变成了一条“定律”,名叫“周光关系”。膨胀的宇宙从遗留下来的记录来看,勒维特并未针对这条定律发表过任何理论。但许多人代她完成了这项工作。天文学家逐渐意识到,有了这条定律,他们就可以测量出遥远的恒星到地球的距离了。揭开宇宙重要奥秘的“变星狂魔”
文章插图
图为用望远镜看到的大麦哲伦云当时,天文学家的测距能力存在上限。假如所有恒星都完全相同,他们就可以通过观测到的恒星亮度算出与地球之间的距离。但恒星的实际光度存在差别。对于离地球较近的恒星,他们可以采用“恒星视差法”等技术,通过比较恒星的相对运动来测算距离。但在一定距离之外,这种方法就派不上用场了。勒维特发现的这些变星(名为“造父变星”)可以通过光变周期推算出它们的真实光度,不受地球上观测到的亮度影响。因此,假如某个遥远星系中含有一颗造父变星,天文学家便可以此作为“标准烛光”(即天文学中已知光度的天体),据此计算出该星系到地球的距离。这种计算方法名叫“宇宙距离阶梯”,需要分几步进行。首先,天文学家要找到一颗距地球足够近、可以使用恒星视差法的标准烛光天体,计算出它到地球的距离及亮度。接下来,假如更远处的标准烛光天体拥有与前者相同的光度变化规律,天文学家便可据此推算出它到地球的距离。在勒维特发表该定律的十年后,哈勃将望远镜对准了仙女座星系。在朦胧的云雾之中,他看见了一根“蜡烛”,闪烁着明亮的光芒。发现这颗造父变星之后,他利用勒维特定律,成功计算出了仙女座到地球的距离,以此证明了仙女座位于银河系之外、且距离银河系相当遥远。不久之后,他又用同样的方法测算出了 23 个星系到地球的距离,其中有些距地球足有 2000 万光年之遥。在勒维特定律的基础之上,哈勃还于 1929 年发现,宇宙正在不断膨胀。“一百多年来,勒维特定律已经成为了我们测量星系距离的基础。”弗里德曼表示,“在此之前,我们对夜空的认知一直是二维的。而勒维特定律使这幅二维图像首次变成了三维图像。我们从此可以真正测出第三个维度,即恒星到地球的距离有多远。”弗里德曼在工作中也高度依赖勒维特的造父变星。在哈勃空间望远镜于 1990 年发射之前,天文学家虽然已经知道宇宙在不断扩张,但并不知道宇宙的确切大小或年龄。对此,勒维特的研究又一次提供了解决方案。弗里德曼之前带领的一个项目就利用了哈勃空间望远镜和造父变星进行测量,使得精确率大幅度提高。有了精确测量变星距离的能力,弗里德曼的团队成功终结了数十年来针对宇宙年龄的讨论。“我们发现,宇宙年龄为 137 亿年。”

推荐阅读