用计算机真正模拟生命还要多久( 二 )


用计算机真正模拟生命还要多久
文章插图
图2. 用于计算反应速率的有效模拟方法始于将系统置于反应物和产物之间的中间位置
这个重要数字对量子计算所需的精度设置了限制。的确,根据阿伦尼乌斯定律,若是估算活化能时出现1 kcal / mol的误差,预测的反应速率将降低5倍。尽管有一些量子方法可以使能量计算的精度远小于kBT,但算力需求极大,导致该方程通常仅限于在少数几个原子组成的系统中使用。然而目前,在诸如酶催化中遇到的那些更复杂的分子系统,科研人员依然在使用这种方法进行模拟。Netz 和 Eaton [2] 提出了密度泛函理论(density functional theory,DFT)方法[2]。DFT所需的计算工作量与系统规模的立方成正比。但是DFT的当前精度通常仅为几千卡每摩尔[6],因此,通过基于DFT的模拟所预测的动态时间尺度将提升一个数量级。尤其需要注意的是,与其他电子结构方法不同,DFT并没有提供系统的方法,通过修改更改计算参数以提高其准确性。
估计时间尺度上的数量级误差本身并不是致命的:如果仿真中发生的所有过程都比实际速度快十倍,则简单的逐步升级将恢复正确的动力学。但是,想象一下某些过程发生的速度快了十倍,而其他过程发生的速度却慢了十倍:这将严重破坏不同过程的相对速率。因此,在仿真中不会保留适当细胞功能所需的相对速率的精妙平衡,导致其预测能力的下降。
这些考虑因素表明,除非DFT的准确性得到显著提高(最近基于机器学习的DFT方法在这方面似乎很有希望[6]),否则并不实用。然而,可能需要花费大量成本的量子计算才能获得所需的预测能力。由于计算成本与所需精度之间存在反比关系,因此可以将这种关系视为 Netz 和 Eaton 提出的“生物不确定性关系(biological uncertainty relationships)”之一。
用计算机真正模拟生命还要多久
文章插图
图3. 亚细胞结构观测及其物理机制推测已有研究,纯计算机模拟仍然困难图为以海马区神经元细胞的亚细胞结构
我们已经了解了很多有关亚细胞现象的物理机制,但是使用第一原理对活动中的活细胞进行计算机模拟仍然是一个遥不可及的目标。基于最近 Netz 和 Eaton 在这篇文章中给出的预测,在这样的模拟变为现实之前,我们将需要等待多长时间。
尽管一个原子级的影片慢速播放至一个小时会令人兴奋,但由于另一个原因,它可能没有太大的预测能力:大多数细胞现象都在运行,然而现有手段只能通过多次重复模拟来积累足够的统计信息后才能理解。在这方面,现代的“细胞学(celling)”方法解决长期动力学问题似乎特别有希望成为一种补救措施。这套原子论方法将系统的空间划分为多个细胞(不要与生物细胞混淆),并计算每个细胞内的短时弹道(short-time trajectories),以构建描述细胞之间过渡的动力学方案。它实现了一石二鸟(It kills two birds with one stone),因为它可以自动提供系统的统计描述,并且比蛮力运算更有效。
随机的、主方程式的生物细胞模拟方法可以看作是细胞的一种极限情况,而这种情况与原子解析轨迹的关系并不明显。Netz 和 Eaton 的估计表明,即使使用现代计算资源,对生物细胞(而非大脑!)的这种模拟也是可以达到的。
然而,除了随机主方程法的近似性质外,它还面临着双重挑战。首先,该方法需要事先了解所有相关的化学方程式细胞内的形成。这有一个重大的局限,因为研究者希望通过模拟发现此前未必能预料到的新化学过程。规避此限制的一种潜在方法是在动态地发现可能的动力学事件(化学转化)的情况下,采用自适应方法。
其次,该方法要求将每种可能的化学转化的速率系数作为输入。除非实验可用,否则此类信息必须来自原子模拟——幸运的是,执行操作的规模要比整个生物细胞的规模小得多。同样,在这里,研究人员需要考虑导致速率估计的计算的准确性。上面已经讨论了一种误差来源,即分子能量估计的准确性,但是由于参数输入到方程中,所以困难并没有就此结束。该模拟仍然需要计算。这样做的一种直接方法是在反应物状态下启动感兴趣的分子系统,等到反应完成(即达到反应产物),然后重复模拟,直到估计出平均反应时间为止[9]。
新的低成本模拟方法
一种更低成本的替代方法是过渡态理论,这是每本化学教科书中都讲的近似方法。不幸的是,现在我们知道过渡态理论对液相化学动力学的描述效果不尽人意。因此,人们将不得不诉诸更准确的、相应也更昂贵的方法。自1970年代起,化学物理学界开发了许多方法来计算“精确的”反应速率,而无需进行长时间的动力学模拟[7],通常的想法是在反应物和产物状态之间进行模拟,并对系统进行监控。直到到达产品为止。这样,可以使用相对较短的轨迹[7]来计算对过渡态理论的动态校正。

推荐阅读