涂山污水处理设备 污水去除氨氮的方法,涂山环保
物化法1.吹脱法
在碱性条件下 , 利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法 , 一般认为吹脱与温度、PH、气液比有关 。
2.沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的 。 应用沸石脱氨法必须考虑沸石的再生问题 , 通常有再生液法和焚烧法 。 采用焚烧法时 , 产生的氨气必须进行处理 , 此法适合于低浓度的氨氮废水处理 , 氨氮的含量应在10--20mg/L 。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法 。 这种方法操作方便 , 氨氮回收率高 , 无二次污染 。 例如:气水分离膜脱除氨氮 。 氨氮在水中存在着离解平衡 , 随着PH升高 , 氨在水中NH3形态比例升高 , 在一定温度和压力下 , NH3的气态和液态两项达到平衡 。 根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理 。 在自然界中一切平衡都是相对的和暂时的 。 化学平衡只是在一定条件下才能保持\"假若改变平衡系统的条件之一 , 如浓度、压力或温度 , 平衡就向能减弱这个改变的方向移动 。 \"遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水 , 另一侧是酸性水溶液或水 。 当左侧温度T1>20℃PH1>9P1>P2保持一定的压力差 , 那么废水中的游离氨NH4+就变为氨分子NH3并经原料液侧介面扩散至膜表面 , 在膜表面分压差的作用下 , 穿越膜孔 , 进入吸收液 , 迅速与酸性溶液中的H+反应生成铵盐 。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐 , 当[Mg2 +
[NH4+
[PO43 -
>2.5×10–13时可生成磷酸铵镁(MAP) , 除去废水中的氨氮 。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法 。 折点加氯是利用在水中的氨与氯反应生成氨气脱氨 , 这种方法还可以起到杀菌作用 , 但是产生的余氯会对鱼类有影响 , 故必须附设除余氯设施 。
生物脱氮法传统和新开发的脱氮工艺有A/O , 两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等 。
1.A/O工艺将前段缺氧段和后段好氧段串联在一起 , A段DO不大于0.2mg/L , O段DO=2~4mg/L 。 在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸 , 使大分子有机物分解为小分子有机物 , 不溶性的有机物转化成可溶性有机物 , 当这些经缺氧水解的产物进入好氧池进行好氧处理时 , 提高污水的可生化性 , 提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+) , 在充足供氧条件下 , 自养菌的硝化作用将NH3-N(NH4+)氧化为NO3- , 通过回流控制返回至A池 , 在缺氧条件下 , 异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环 , 实现污水无害化处理 。 其特点是缺氧池在前 , 污水中的有机碳被反硝化菌所利用 , 可减轻其后好氧池的有机负荷 , 反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求 。 好氧在缺氧池之后 , 可以使反硝化残留的有机污染物得到进一步去除 , 提高出水水质 。 BOD5的去除率较高可达90~95%以上 , 但脱氮除磷效果稍差 , 脱氮效率70~80% , 除磷只有20~30% 。 尽管如此 , 由于A/O工艺比较简单 , 也有其突出的特点 , 目前仍是比较普遍采用的工艺 。
2.两段活性污泥法能有效的去除有机物和氨氮 , 其中第二级处于延时曝气阶段 , 停留时间在36小时左右 , 污水浓度在2g/l以下 , 可以不排泥或少排泥从而降低污泥处理费用 。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力 , 使溶解氧和营养物质在其表面富集 , 为吸附在PAC上的微生物提供良好的生活环境从而提高有机物的降解速率 。
近年来国内外出现了一些全新的脱氮工艺 , 为高浓度氨氮废水的脱氮处理提供了新的途径 。 主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等 。
4.短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式 , 是去除水中氨氮的一种较为经济的方法 , 其原理就是模拟自然生态环境中氮的循环 , 利用硝化菌和反硝化菌的联合作用 , 将水中氨氮转化为氮气以达到脱氮目的 。 由于氨氮氧化过程中需要大量的氧气 , 曝气费用成为这种脱氮方式的主要开支 。 短程硝化反硝化是将氨氮氧化控制在亚硝化阶段 , 然后进行反硝化 , 省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐 , 再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化) 。 该技术具有很大的优势:①节省25%氧供应量 , 降低能耗;②减少40%的碳源 , 在C/N较低的情况下实现反硝化脱氮;③缩短反应历程 , 节省50%的反硝化池容积;④降低污泥产量 , 硝化过程可少产污泥33%~35%左右 , 反硝化阶段少产污泥55%左右 。 实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段 , 阻止亚硝酸盐的进一步氧化 。
推荐阅读
- 手机 OnePlus Tag商标已申请 一加也要涉足智能追踪设备市场
- 美国 中国为啥探测火星?美国百思不解,俄:目的奇怪,带了一特殊设备
- 硬件 DHL将在2022年前部署2000台Locus机器人设备
- Apple 新专利显示苹果眼镜等AR设备可感知并使用HomeKit自动调整环境照明
- 硬件 给牛戴上口罩:农业巨头嘉吉将推吸收奶牛甲烷排放的可穿戴设备
- Huawei 消息称意大利有条件批准使用华为5G设备
- Linux Linux 5.14 开始为Alder Lake M低功耗移动设备提供支持
- 理论 重大突破!光伏设备第一次实现:效率突破100%的理论极限!
- SONY [视频]索尼Motion Sonic上架众筹:面向音乐表演者的可穿戴设备
- 通信运营商 AT&T宣布明年2月关闭3G网络 仅向部分设备提供支持